
Arthritis Care Res 2015; 67(4): 502-8’’

http://hdl.handle.net/11187/2217

Copyright © Wiley. This file is for personal use. Further distribution is not permitted.
Association of low birth weight and preterm birth with the incidence of knee and hip arthroplasty for osteoarthritis

Sultana Monira Hussain¹, Yuanyuan Wang¹, Anita E. Wluka¹, Jonathan E. Shaw², Dianna J. Magliano², Stephen Graves³⁴, Flavia M. Cicuttini¹

¹Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC 3004, Australia;
²Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
³Department of Orthopaedic, Repatriation General Hospital, Daw Park, SA 5041, Australia;
⁴Australian Orthopaedic Association National Joint Replacement Registry, Discipline of Public Health, School of Population Health & Clinical Practice, University of Adelaide, SA 5005, Australia

Funding: For the Australian Diabetes, Obesity and Lifestyle (AusDiab) Study, funding support has been received from the National Health and Medical Research Council (NHMRC grant 233200), Australian Government Department of Health and Ageing, Abbott Australasia Pty Ltd, Alphapharm Pty Ltd, AstraZeneca, Bristol-Myers Squibb, City Health Centre-Diabetes Service-Canberra, Department of Health and Community Services - Northern Territory, Department of Health and Human Services – Tasmania, Department of Health – New South Wales, Department of Health – Western Australia, Department of Health – South Australia, Department of Human Services – Victoria, Diabetes Australia, Diabetes Australia Northern Territory, Eli Lilly Australia, Estate of the Late Edward Wilson, GlaxoSmithKline, Jack Brockhoff Foundation, Janssen-Cilag, Kidney Health Australia, Marian & FH Flack Trust, Menzies Research Institute, Merck Sharp & Dohme, Novartis Pharmaceuticals, Novo Nordisk Pharmaceuticals, Pfizer Pty Ltd, Pratt Foundation,
Queensland Health, Roche Diagnostics Australia, Royal Prince Alfred Hospital, Sydney, Sanofi Aventis, sanofi-synthelabo, and the Victorian Government’s OIS Program.

The current linkage study is supported by Arthritis Australia. SMH is the recipient of Endeavour IPRS and APA scholarship from the Australian government and Faculty Excellence Scholarship from Monash University. YW is the recipient of an NHMRC Career Development Fellowship (Clinical level 1, #1065464). JES is supported by a National Health and Medical Research Council Research Fellowship. AEW is supported by Monash University, Senior Postdoctoral Fellowship, NHMRC Career Development Fellowship (Clinical level 2, #1063574).

Address for correspondence and reprint requests

Prof. Flavia M. Cicuttini
Head, Musculoskeletal Unit
School of Public Health and Preventive Medicine
Monash University, Alfred Hospital
Melbourne VIC 3004, Australia
Phone: +61 3 990 30158
Fax: +61 3 990 30556
Email: flavia.cicuttini@monash.edu

Conflict of interest statement: No conflict of interest has been declared by the authors.
Short title: Low birth weight, preterm birth; and osteoarthritis
Word count: 2,452
Abstract

Objectives: Low birth weight (LBW) and preterm birth have been associated with adverse adult outcomes including hypertension, insulin resistance, cardiovascular disease and reduced bone mass. It is unknown whether LBW and preterm birth affect the risk of osteoarthritis (OA). This study aims to examine whether LBW and preterm birth were associated with the incidence of knee and hip arthroplasty for OA.

Methods: 3,604 participants of the Australian Diabetes, Obesity and Lifestyle Study who reported their birth weight and history of preterm birth and were aged more than 40 years at the commencement of arthroplasty data collection. The incidence of knee and hip replacement for osteoarthritis during 2002-2011 was determined by linking cohort records to the Australian Orthopaedic Association National Joint Replacement Registry.

Results: One hundred and sixteen participants underwent knee arthroplasty and 75 underwent hip arthroplasty for OA. Low birth weight (yes vs. no, HR 2.04, 95% CI 1.11-3.75, p=0.02) and preterm birth (yes vs. no, HR 2.50, 95% CI 1.29-4.87, p=0.007) were associated with increased incidence of hip arthroplasty independent of age, sex, BMI, education level, hypertension, diabetes, smoking and physical activity. No significant association was observed for knee arthroplasty.

Conclusions: Although these findings will need to be confirmed, they suggest that individuals born with LBW or preterm are at increased risk of hip arthroplasty for OA in adult life. The underlying mechanisms warrant further investigation.
Significance and Innovations:

- Low birth weight and preterm birth have been associated with adverse outcomes in adulthood including hypertension, insulin resistance, and cardiovascular disease and more recently reduced bone mass.
- It is unknown whether low birth weight and preterm birth affect the risk of osteoarthritis.
- This study finds out that low birth weight and preterm birth are risk factors for hip but not knee OA requiring arthroplasty.
- Individuals with low birth weight or preterm birth should be identified as an “at risk group” and targeted for close monitoring of hip OA.
Osteoarthritis (OA) is a major public health problem and the most common cause of disability, with OA of the knees and hips resulting in a total of 71.1 million years lived with disability in 2010, an increase of 64% since 1990 globally (1). Currently there are no registered disease-modifying OA drugs. Therefore understanding the risk factors for OA is important for improving prevention.

Low birth weight (LBW) and preterm birth have been associated with adverse outcomes in adulthood including hypertension, insulin resistance, cardiovascular disease (2), and more recently reduced bone mass (3). As an underlying mechanism, fetal nutrition in utero leading to reprogramming of the insulin-like growth factor 1 (IGF-1) axis has been proposed (4, 5). IGF-1 stimulates osteoblastic differentiation of mesenchymal stem cells and new bone formation, and thus maintains proper bone microarchitecture and mass (6).

Whether LBW and preterm birth affect the risk of OA is unknown. However, acetabular dysplasia has been linked with preterm birth (7, 8), and mild acetabular dysplasia is associated with an increased incidence of hip OA (9-11). There is increasing evidence suggesting that hip and knee OA are susceptible to different risk factors (12). Given the bony changes associated with LBW and preterm birth, we hypothesised that they would be associated with hip rather than knee OA.

Studies exploring knee or hip OA have generally defined OA using imaging modalities (12, 13). Another method for defining OA is based on arthroplasty (4, 16) which has been shown to be useful for identifying the potential risk factors for knee and hip OA (13). This definition signifies severe knee and hip OA which is relevant to the symptomatic disease burden and health economics. Thus the aim of this study was to determine whether LBW and preterm...
birth were associated with the incidence of knee and hip arthroplasty as measures of severe OA in a prospective cohort study.

Methods

Study participants

The Australian Diabetes, Obesity and Lifestyle (AusDiab) Study is a national, population-based cohort study of 11,247 people, aged ≥25 years, recruited by a stratified cluster sampling method, involving seven strata (six states and the Northern Territory) and clusters based on census collector districts, during 1999-2000. In 2004-2005, a 5-year follow-up survey was conducted. All eligible participants included in the baseline survey were invited (n=10,788), of whom 7,157 (66.3%) responded (Figure 1). Detailed methods and response rates were described previously(13). The study was approved by the International Diabetes Institute ethics committee(13).

For the current study, participants were restricted to those aged ≥40 years at the commencement of data collection by the Australian Orthopaedic Association National Joint Replacement Registry (AOA NJRR), 1 January 2002, since arthroplasty as the treatment of OA is very uncommon under this age(14). Of the 7,157 participants, 950 were excluded as they were aged <40 years or had the first recorded arthroplasty as a revision surgery, leaving 6,207 participants eligible for the current study (Figure 1). The data linkage study was approved by the Alfred Hospital Ethics Committee, and the University of Adelaide and Monash University Human Research Ethics Committees.

Demographic, lifestyle factors, anthropometric and clinical measurement
Demographic and lifestyle data, including date of birth, gender, smoking, and physical activity were collected in 1999-2000 by trained interviewers using standardised questionnaires(13). Height was measured to the nearest 0.5 cm without shoes using a stadiometer. Weight was measured without shoes and in light clothing to the nearest 0.1 kg using a mechanical beam balance. Body mass index (BMI) was calculated in kilograms per square metre(13). Blood pressure was measured with Dinamap/mercury sphygmomanometer(13). Hypertension was defined as blood pressure >140/90 mmHg or current use of antihypertensive medication(13).

Blood was drawn after an overnight fast (≥9 h) for measurement of glucose followed by a 2-h 75 g oral glucose tolerance test. All specimens were analysed at a central laboratory. Fasting plasma glucose (FPG) and 2-h postload glucose were analysed by an automated glucose oxidase method (Olympus Optical Co. Ltd., Tokyo, Japan). Diabetes was defined if participants were on anti-diabetic medication, or they had FPG ≥7.0 mmol/L, or 2-h postload glucose ≥11.1 mmol/L(15).

Low birth weight and prematurity

At the 2004–2005 follow-up, participants were asked to state their birth weight and whether they were born two weeks or more preterm(2). Participants were also asked to indicate the likely accuracy and source of their answers(2). Of the 6,207 eligible participants, 3,604 reported a value for birth weight and preterm birth, with the others unable to give a value. More than 90% of respondents who reported a birth weight considered it to be “accurate” and only 6% were based on a “guess”; 80% obtained their birth weight from a family member (67% of participants had a living natural mother, and 46% a living natural father) and 10% from
medical records(2). Detailed information on accuracy and validity of self-reported LBW and preterm birth were previously described(2). LBW was defined as birth weight <2.5 kg. Participants who reported their birth weight were younger (49.6 ± 12.6 vs. 53.3 ± 15.8 years, p < 0.001), less likely to have diabetes (6.4% vs. 10.6%, p < 0.001) and hypertension (28.2% vs. 37.0%, p < 0.001), and had lower BMI (26.9 ± 4.9 vs. 27.1 ± 5.1 kg/m², p=0.05) compared with individuals who did not respond to the questionnaire or could not recall their birth weight. However, when the risk of arthroplasty of those who reported their birth weight versus those who did not was compared, there was no difference in risk of knee (2.8% vs. 2.8%) or hip (1.9% vs. 1.8%) arthroplasties for OA (all p >0.80).

Identification of incident primary knee and hip arthroplasty

Cases were identified from the AOA NJRR as those who underwent either a primary hip or a primary knee arthroplasty. Detailed information is available in the Registry on prostheses, patient demographics, type and reason for arthroplasty (such as OA, rheumatoid arthritis, fracture, etc.). Data are collected from both public and private hospitals and validated using a sequential multi-level matching process against State and Territory Health Department unit record data(16). Following the validation process and retrieval of unreported records, the Registry collects an almost complete set of data relating to hip and knee arthroplasty in Australia(16).

Matching of AusDiab participants using first name, surname, date of birth, and gender, to the AOA NJRR in order to identify those who had had a primary arthroplasty performed between 1 January 2002 and 31 December 2011 was performed using U.S. Bureau of the Census Record Linkage Software.
Definition of knee and hip OA

Knee or hip OA was defined as the first primary knee or hip arthroplasty with a contemporaneous diagnosis of OA, as recorded in the AOA NJRR(17). If one person had multiple arthroplasties, such as bilateral knee arthroplasty, bilateral hip arthroplasty, or both knee and hip arthroplasties, the first recorded procedure was considered the event.

Statistical analysis

Cox proportional hazard regression models were used to estimate the hazard ratios (HR) for knee or hip arthroplasty due to OA associated with LBW and preterm birth. Follow-up for arthroplasty (i.e. calculation of person-time) began in January 1, 2002, and ended at the date of first arthroplasty for OA or date of censoring. Participants were censored at either the date of first arthroplasty performed for indications other than OA, the date of death, or end of follow-up (i.e. December 31, 2011, the date that ascertainment of arthroplasty by NJRR was complete), whichever came first. LBW and preterm birth were analysed and modelled separately. Each analysis was adjusted for age, sex, and BMI, in model 1, as these are established risk factors for arthroplasty for OA(17). In model 2, the analyses were further adjusted for hypertension, diabetes, smoking status and physical activity. To test whether associations of LBW and preterm birth with arthroplasty risk were modified by obesity (BMI ≥ 30 kg/m²) and sex, interactions were fitted, and tested using the likelihood ratio test. Tests based on Schoenfeld residuals and graphical methods using Kaplan-Meier curves showed no evidence that proportional hazard assumptions were violated for any analysis.

With the sample size of 3,604 participants who had complete data available on birth weight, our study had 80% power (at the 5% significance level, 2 sided significance) to detect a risk
ratio of 1.96 where the risk of knee or hip replacement in those without low birth weight or preterm birth was assumed to be 1.9% and the prevalence of low birth weight to be 9.0%.

All statistical analyses were performed using Stata 12.0 (StataCorp LP., College Station, TX, USA).

Results

One hundred and ninety one arthroplasties (116 knee arthroplasties and 75 hip arthroplasties) performed for OA were identified between January 1, 2002 and December 31, 2011. The mean follow up duration was 9.3 (SD 2.1) years. Descriptive characteristics of the study participants are presented in Table 1. Of the 3,604 participants, 122 participants had only low birth weight, 144 participants were only preterm and 135 participants had both low birth weight and preterm birth. The correlation between low birth weight and preterm birth was 0.45 (Pearson's correlation, \(p = <0.001 \)). Participants who underwent a hip arthroplasty were more likely to be born with LBW or preterm than those who did not have a hip arthroplasty.

In age, sex and BMI adjusted analysis (model 1), both LBW [Hazard ratio (HR) 1.87, 95% confidence interval (CI) 1.02-3.41, \(p=0.04 \)] and preterm birth (HR 2.41, 95% CI 1.25-4.66, \(p=0.009 \)) were associated with increased incidence of hip arthroplasty for OA. The results remained significant after adding hypertension, diabetes, smoking and physical activity to the previous model, for both LBW (HR 2.02, 95% CI 1.10-3.73, \(p=0.02 \)) and preterm birth (HR 2.53, 95% CI 1.30-4.92, \(p=0.006 \)) (model 2). In contrast, neither LBW nor preterm birth was significantly associated with the incidence of knee arthroplasty for OA in unadjusted or adjusted analyses (Table 2).
There was no evidence that obesity or sex modified the associations between LBW or preterm birth and arthroplasty risk (all p > 0.10).

Discussion

This is the first study to report the relationship of LBW and preterm birth with the incidence of severe knee and hip OA requiring arthroplasty in a general population. LBW and preterm birth were associated with increased incidence of hip OA but not knee OA.

No previous studies have examined the association between LBW or preterm birth and the risk of OA. We found an association for hip OA requiring arthroplasty. The etiology of hip OA is multifactorial(18). Both congenital and developmental diseases of the hip, such as mild hip dysplasia, may influence the development of hip OA in adulthood(19, 20). The formation of the acetabulum is incomplete at birth in preterm babies(21). Preterm infants often develop a postural deformation of the legs which persists till early childhood(7), perhaps because of an underdeveloped or shallow, upwardly sloping acetabulum(22), decreased joint surface area(9), or because the ligaments holding the ball in place are too loose(7). These factors may influence the development of the hip, resulting in abnormal hip joint shape. The important role of hip bone shape and geometry in the aetiology of hip OA has been established(20). Premature and LBW babies represent a unique vulnerable population, in which bone growth and mineral acquisition are critical in regards to bone turnover(23). A case-control study similarly found reduced peak bone mass at the femoral neck in very low birth weight babies(3). There is emerging evidence that preterm birth and very low birth weight results in decrease in bone formation and increase in bone resorption(23, 24) that reduced osteoclast
apoptosis (25) and cartilage degeneration (26) which may be another potential pathways of development of hip OA.

Although we found a relationship of LBW and preterm birth with hip OA requiring arthroplasty, no relationship was observed for knee OA requiring arthroplasty. These differences support the notion of different susceptibility of these joints to various risk factors (12, 27). Thus, whilst bone shape and geometry are important in the aetiology of hip OA, these factors are less critical than soft tissue and other factors in the pathogenesis of knee OA (20). As LBW and preterm birth have significant impacts on bone and hip structure, this is biologically plausible (7).

Clarifying the mechanisms for the relationship between LBW and preterm birth and hip OA is important. LBW and preterm birth may result in abnormal hip development because these babies are born early and the acetabulum is underdeveloped (21, 22). Post-delivery, the hips are extended rather than being maintained in a flexed and abducted in utero position (28, 29). This altered hip position may potentially be responsible for an increased incidence or severity of acetabular dysplasia. If this is proven to contribute to the development of hip OA, then modifying hip position through postural support (28, 29) and perhaps the use of double nappies (30) may be beneficial for babies born with LBW or preterm, and they may need to be targeted for screening and early treatment of hip dysplasia. As the number of LBW and preterm births is increasing, if they are proven to be at increased risk of hip OA, the impact of proactive strategies to reduce hip OA, such as the prevention of obesity (31) will be greater.

The strengths of our study include its large sample size and prospective design. Although defining OA based on arthroplasty only identifies the tip of the iceberg of the true problem, it
signifies the severity of OA which is relevant to the symptomatic disease burden and health economics(31). Furthermore, the AOA NJRR data is validated and nearly complete regarding arthroplasty in Australia(16). The findings of our study need to be considered within the context of its limitations. Birth weights and preterm birth were self-reported. This might have resulted in recall and rumination bias. However, in this study, there is low scope of recall bias or rumination bias in birth weight or preterm birth in relation to arthroplasty. Birth weight and preterm birth data were collected during the first round of follow-up of the cohort in 2004-2005. The linkage component of the study in terms of joint replacement for OA was introduced in 2013. When people were asked about their birth status, there was no specific hypothesis that this would be associated with health outcomes including OA. We didn’t ask people if they had low birth weight. We simply asked them about their weight at birth – many people would not know what a normal birth weight is, so sick people would be unlikely to be able to assign themselves an abnormal result. Previous studies reporting associations of birth weight with adult health have used this technique(2, 32-34). Self-reported birth weight in our study was 3.37±0.7 (mean±SD) kg, which was similar whether birth weight was obtained from family members or from medical records (3.35±0.6 vs. 3.37±0.7 kg; after adjustment for age and sex, P=0.36)(2). The birth weight of our study population is similar to the recent average Australian birth weight of 3.46 kg for boys and 3.33 kg for girls(35). Individuals with the highest and lowest birth weights tend to report normal birth weight(36) which will lead to underestimation of arthroplasty risk associated with LBW. Nevertheless, we found a significant association of LBW and prematurity with hip but not knee arthroplasty. It is unlikely that any misclassification would affect the relationship with arthroplasty at the hip but not the knee. For example, whilst participants who reported birth weight and prematurity had better health compared with those who did not respond to the questionnaire or could not recall their birth weight, the risks of both hip and knee arthroplasty were very similar. We did
not have arthroplasty data prior to 2002. It is possible that arthroplasties occurring before 2002 represent more rapidly progressive disease, and inclusion of those data in analysis may influence our findings. Only 1.5% of those who attended the baseline AusDiab study thought that they may have undiagnosed diabetes. Although this was higher than in those who did not participate, published data show that the absolute number was too small to have any measurable effect even on diabetes prevalence(37). Again, whether patients undergo arthroplasty as the treatment of OA may be influenced by a number of factors such as access to health care, physician bias, and patient-level factors(38), in addition to disease severity. Australia has a publicly-funded universal health system (Medicare) and people without private health insurance have access to joint replacement under this system. We have performed the analysis adjusted for age, sex, BMI, hypertension, diabetes, smoking and physical activity to counter this issue. Further adjustment for education and ethnicity did not change the results (data not shown). Moreover, it is possible that there is residual confounding. However, if residual confounding is the main explanation for the association between LBW and preterm birth and OA risk, we would expect the same association for knee and hip arthroplasty which was not the case as we observed differential effect of LBW and preterm on hip and knee OA.

LBW and preterm birth are associated with an increased risk of hip but not knee OA requiring arthroplasty. This may be via the mechanisms of acetabular dysplasia and reduced bone mass. Although these findings will need to be confirmed in other studies and the underlying mechanisms warrant further investigation, these data suggest that individuals born with LBW or preterm are at increased risk of hip arthroplasty for OA in adult life. Identifying individuals born with LBW or preterm as an “at risk group” for hip OA and targeting them for close monitoring and early interventions, may reduce the incidence of hip OA in later life.
Acknowledgements

The AusDiab study co-coordinated by the Baker IDI Heart and Diabetes Institute, gratefully acknowledges the support and assistance given by: I Al Salmi, B Atkins, E Barr, A Cameron, S Chadban, M de Courten, D Dunstan, S Murray, N Owen, S Tanamas, T Welborn, P Zimmet and all the study participants. For the data linkage, we would especially like to thank the Registry coordinator Ann Tomkins and statistician Lisa Miller from the Australian Orthopaedic Association National Joint Replacement Registry. We also acknowledge B Billah for his advice on statistics.

References

Table 1: Characteristics of study population

<table>
<thead>
<tr>
<th></th>
<th>No arthroplasty (n = 3,413)</th>
<th>Knee arthroplasty (n = 116)</th>
<th>Hip arthroplasty (n = 75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at baseline (years)</td>
<td>51.8 (10.0)</td>
<td>59.7 (9.5)</td>
<td>59.0 (9.5)</td>
</tr>
<tr>
<td>Age at 2002 (years)</td>
<td>54.1 (10.0)</td>
<td>62.1 (9.5)</td>
<td>61.3 (9.3)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>2,058 (60.3)</td>
<td>69 (59.5)</td>
<td>45 (60.0)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>26.9 (4.9)</td>
<td>30.2 (5.3)</td>
<td>28.7 (4.4)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>981 (28.9)</td>
<td>68 (59.1)</td>
<td>36 (48.0)</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>232 (6.7)</td>
<td>14 (12.3)</td>
<td>5 (6.7)</td>
</tr>
<tr>
<td>Smoking status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smoker</td>
<td>1,929 (57.5)</td>
<td>68 (59.1)</td>
<td>39 (54.2)</td>
</tr>
<tr>
<td>Former smoker</td>
<td>1,031 (30.7)</td>
<td>36 (31.3)</td>
<td>25 (34.7)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>395 (11.8)</td>
<td>11 (9.6)</td>
<td>8 (11.1)</td>
</tr>
<tr>
<td>Physical activity, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedentary</td>
<td>484 (14.3)</td>
<td>26 (22.8)</td>
<td>15 (20.3)</td>
</tr>
<tr>
<td>Insufficient</td>
<td>1,027 (30.3)</td>
<td>40 (35.1)</td>
<td>19 (25.7)</td>
</tr>
<tr>
<td>Sufficient</td>
<td>1,878 (55.4)</td>
<td>48 (42.1)</td>
<td>40 (54.1)</td>
</tr>
<tr>
<td>Birth weight (kg)</td>
<td>3.4 (0.7)</td>
<td>3.5 (0.8)</td>
<td>3.3 (0.7)</td>
</tr>
<tr>
<td>Low birth weight, n (%)</td>
<td>303 (8.9)</td>
<td>11 (9.5)</td>
<td>13 (17.3)</td>
</tr>
<tr>
<td>Preterm birth, n (%)</td>
<td>270 (9.5)</td>
<td>8 (8.5)</td>
<td>11 (19.0)</td>
</tr>
</tbody>
</table>

Data presented as mean (SD) or no (%)
Table 2: Relationship of low birth weight and preterm birth with incidence of knee and hip arthroplasty for osteoarthritis

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted</th>
<th>P value</th>
<th>Adjusted Model 1*</th>
<th>P value</th>
<th>Adjusted Model 2†</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knee arthroplasty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low birth weight</td>
<td>1.07 (0.58, 1.99)</td>
<td>0.83</td>
<td>0.93 (0.50, 1.73)</td>
<td>0.82</td>
<td>0.86 (0.45, 1.66)</td>
<td>0.65</td>
</tr>
<tr>
<td>Preterm birth</td>
<td>0.88 (0.43, 1.81)</td>
<td>0.73</td>
<td>0.97 (0.47, 2.00)</td>
<td>0.93</td>
<td>0.79 (0.36, 1.73)</td>
<td>0.56</td>
</tr>
<tr>
<td>Hip arthroplasty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low birth weight</td>
<td>2.14 (1.18, 3.90)</td>
<td>0.01</td>
<td>1.87 (1.02,3.41)</td>
<td>0.04</td>
<td>2.02 (1.10, 3.73)</td>
<td>0.02</td>
</tr>
<tr>
<td>Preterm birth</td>
<td>2.21 (1.15, 4.27)</td>
<td>0.02</td>
<td>2.41 (1.25, 4.66)</td>
<td>0.009</td>
<td>2.53 (1.30, 4.92)</td>
<td>0.006</td>
</tr>
</tbody>
</table>

* adjusted for age, sex and BMI

† adjusted for age, sex, BMI, hypertension, diabetes, smoking and physical activity
Baseline, 1999 - 2000
n = 11,247

459 excluded as they were ineligible for further contact (requested no further contact, known to be deceased, too ill or living in high care nursing facility)

Invited for 1st AusDiab follow up, 2004 – 2005
n = 10,788

3,631 did not respond

Responded to 1st AusDiab follow-up
n = 7,157 (66.3% response rate)

950 excluded as they were aged <40 years or had first arthroplasty as a revision surgery

Study population
n = 6,207

Asked about birth weight and preterm birth

2,603 did not provide birth weight and whether born preterm

Participants reported a value of their birth weight and whether they were born preterm
n = 3,604 (58.1%)

Linked to AOA NJRR regarding arthroplasty between January 2002 and December 2011